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ABSTRACT 

^> The development of certain aspects of a physically interpretable 

geometry defined over a finite field is presented. The concepts of 

order, norm, metric, inner product, etc. are developed over a subset 

of the total field. It is found that the finite discrete space behaves 

..locally, not globally, like the conventional "continuous" spaces. The 

implications of this behavior for mathematical induction and the limit 

procedure are discussed, and certain radical conclusions are reached. 

Among these are: (a) mathematical induction ultimately fails for. a 

finite system and further extension leads to the introduction of formal 

indeterminancy; (b) finite space-time operations have inherent formal 

properties like those heretofore attributed to the substantive physical 

universe, and (c) certain formal properties attributed to continuous 

spaces cannot be developed from successive embedding in finite space of 

finer resolution—but must be based on indc7c: lent axiomatic (non- 

testable) assumptions. It is suggested that a finite field representa- 

tion should be used as the fundamental basis of a physical representation. 
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1. INTRODUCTION 

"Mathematics is devised by mathematicians," This tautology contains 

* potentially significant implications. Mathematicians are mortal human 

beings whose conceptualizing capacity is finite. Acting in a rational 

.mode, or as we shall say, as a "cognitive agent," man communicates at 

finite rates; emplojs finite strings of symbols; and has finite data pro- 

cessing and storage capacity. Yet he has devised conceptual mathematic 1 

geometries of continuous and infinite spaces. It is reasonable to expect 

that a man's finiteness qua mathematician will exert a controlling influ- 

ence on the nature of the concepts he develops. This realization has led 

% us to seek a priori characterizations of these concepts that result from 

the nature of the cognitive agent who produced them. 

Thus, we have set ourselves the task of determining "How do you get 

there from here." Or more formally, how can a finite cognitive agent 

develop concepts of continuous spaces and space-time systems as well as 

the associated mathematical operations. It is necessary to start with 

the development of numbers—in the finite cognitive system and demonstrate 

how this lead? to operations such as translation and rotation in finite 

geometries. Then, we examine the meaning of the corresponding processes 

v  in continuous spaces in a manner appropriate to the operations admissible 

to the finite cognitive agent. 

The resulting implications of this investigation are in some respects 

* expected;—in other aspects quite radical. The findings of this paper are 
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in opposition to certain of the conventional conclusions and assumptions of 

mathematics and we are aware of their heretical nature. Thus we ask the 

reader to consider the arguments in the context of the philosophical view- 

point upon which they are based. 

It is found that there are constraints that limit the cognitive agent 

in actu and contribute certain formal properties to his admissible concepts. 

In particular, we look at mathematical induction and the process of going 

to tho limit; examples are presented that are physical illustrations of our 

ideas. It is proposed that certain of the presumed external physical 

postulates are in fact formal properties of finite spaces and their re- 

introduction as physical properties results from our using infinite field 

mathematics. We suggest, and present examples, to show how these postulates 

arise to constrain the mathematics of infinite fields to represent 

"experience." 

In this paper, we explore a finite field (Galois Field) representation 

and attempt to formulate a physically interpretable geometry over this 

field. Thus we seek to define the basic objects of geometry solely in 

terms of the finite field concepts. We have developed some formal aspects 

of a vector space defined over a finite scalar field. Kustaanheimo and 

Jarnefelt did extensive work to formulate such a geometry in order to 

provide a structure that was consistent with the apparent finiteness and 

discreteness of the physical universe; since then there have been additional 

2 
efforts to refine the mathematics. 

Dm 



2. HEURISTICS 

The goal of this effort is to establish that one cai\ perform all 

legitimate arithmetic and algebraic operations solely within the context 

3 
defined by a primitve commitment to finitism, etc.  In order to achieve 

this demonstration, we must adopt certain mathematical structures that 

can serve as the foundation of the various operations. In this section 

we shall present a series of metatheoretical and motivational arguoents 

that seek to establish the concepts and development that are employed. 

It is clear that uniqueness and necessity of a representation of experience 

cannot be proven unless the universe of discourse is closed, i.e., uniqueness 

and necessity are always with respect to a given context. Hence a system 

purporting to represent or at least be consonant with experience is perforce 

backed "only" by sufficiency or demonstrable adequacy. 

To insure that arithmetic can be carried out we shall require that 

the two basic operations of addition and multiplication be defined. Also 

the inverse operations of subtraction and division will be required. To 

3 
insure that we satisfy the requirement of ontological parity we shall 

demand that the basic set be closed under the four primary operations. 

Nonambiguity similarly implies that the results of these operations be 

unique. We shall also seek as much procedural invariance as we can by 

requiring associative and commutative multiplication and addition. 

Furthermore, the combination of these two operations will be such that 

the appropriate distributive laws are valid. These conditions are 

sufficient to define a field as the underlying mathematical reservoir 
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for our primitive operations. Therefore, as an immediate consequence of 

our commitment to finitism, ve are led to consider a finite field 

(Galois field). 

If our mathematical system is to serve as a suitable basis for the 

many computational operations, then it must admit of many other operations 

that are to be considered legitimate. There are certain such operations 

that do not always lead directly to a formal answer because.of the 

severe limitations imposed by the restriction of finite resources and 

capabilities. However, in any actual calculation one always has finite 

and greatly limited resources and that never becomes a deterrent or 

causes termination of the logical procedures. One simply replaces the 

problem for which there is no formal solution by some solvable problem 

taken from the given field. Thus, for example, when computing the 

square root of two, one "truncates" the calculation at the desired 

level vx  resuluLioii. Clearly luis is lanltunouni lu introducing a replace- 

ment problem. If we seek a resolution of one decimal place in the answer, 

-a 
then we look to a neighboring perfect square, 1$?6 X 10  that is "close" 

-2 ~i 
to 200 x 10  and declare the answer to be Ik  x 10 . In this way, 

replacement permits our mathematical operations to continue and avoids 

cessation due to uncomputability or lack of performable instructions. One 

couid also construct his system to reset itself to some arbitrary point—say 

zero—whenever an impasse is reached. However, the rationale for replacement 

is clearly preferable because it seeks a "nearby" problem and we shall 

adopt it. 



3 Let us point out that ve have described replacement with a 

"neighboring" problem or "best" approximation but the bare algebraic 

structure does not yat have any procedure for determining such a "best" 

replacement. Thus ve need, sane measure of proximity or closeness in 

order to determine that which is the appropriate substitute. If we are 

to define a vector space over the finite field, then a metric can fill 

this requirement. However, even if some value can be associated with 

the "distance" between points, we still require a mechanism for comparing 

different distances. In short, the underlying number field must have 

some ordering relation. Since our primitive commitments do not demand* 

global operations but merely a suitable local definition, we shall seek— 

5 
as a minimum—an irreflexive binary relation. Clearly there is no way 

to define a meaningful transitive order throughout a finite field and 

still retain the other properties of uniqueness, nonambiguity, 

irreflexivity, etc. 

In defining a metric for a vector space, we will encounter the 

square root operation. If we restrict ourselves to a ground field GF(p), 

then there will be formal square roots for half the elements of the 

multiplicative group, i.e. for (p - l)/2 elements. This behavior is 

reminiscent of the analogous property of the real number system in which 

only "half" the elements (positive elements) have square roots in the 

field. If we wish to institute an extension of Gl?(p) in order to 

generate a square root for every element of GF(p), then we may do a 
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similar thing to that done In conventional analysis, viz. embed our 

system in a "complex plane" obtained by expanding GF(p) via Xs + 1 as a 

prime ideal. In'this way all "real" numbers (i.e. elements of GF(p)) 

vlll have formal square roots'.   Unfortunately, ve have merely set the 

problem back one stage for only (p3 - l)/2 elements of GF(p3) have square 

roots in GF(p8). We can establish a replacement technique for these 

nonsquare elements of GF(p3), thereby closing our systen. This procedure 

does generate a formally satisfactory system f<.- all elements of the 

ground field. Actually, ve vill find that even these hard von formal 

square roots for GF(p) do not in general behave as desired and we are ~ 

forced to introduce still another replacement procedure to rectify the 

situation. This is necessitated by the additional demand that square 

roots of ordered numbers lie in the same order. With thei>e many quali- 

fications and extensions, ve vill find that certain general properties 

of geometry in vector spaces can he realized. 

. *    * ■■ 
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-¥■-= 3. AN "ORDERING" RELATION 

In this section we shall begin work upon the explicit development 

of geometry defined in a finite and discrete space. For the early and 

classical work on this topic see reference 1. 
k 

Consider GF(p) with p = 8 II qj - 1 , where the qt are the odd primes. 

We know that in such a field the elements 1,2,...,q,. are all square 

residues and -1 is nonsquare. 

Definition(l) Let x,y 6 GF(p) with p given above. If x- y * 

square residue, then x is said to exceed y, in symbols x > y. If 

6 
x - y = nonsquare residue, then x is less than y, x < y. 

Theorem (l). Let p be as above. If x, is square, then -x is non- 

square and vice versa (here -x is the additive inverse of x, i.e. 

x + (-x) = O(mod p). 

..;!# 
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Proof« If P is en odd prime and v a primitive root of GF(p), then 

>?<r-D/3 3 -i(niod p). Let x ■ vn and -x = w" , where n an even integer 

and m an integer. We have 

x + (-x) «a wB + v* 2 o(mod p) . 

Wow, either n > m or m > n . Assume, for definiteness, m < n . Then 

w'(w""' + 1) £ O(mod p) . 

Since vB fi O(mod p) , ve have v"~B + 1 a o(mod p) .    From above, this 

gives wn"" s w(p"1)/2(mod p) .    From this ve obtain n - m s (p - l)/2 (mod p - l) . 

However, for a p in the form given above, ve see that .." 

(p - l)/2 - h n qt  - 1 
t =i 

vhich is always odd. Therefore n and m have opposite parity. 

Theorem (2). If x,y 6 GF(p) vith p given above, then x > y iff y < x . 

Pr<VYf.       Acqijnw»   V   "> V Thian   V   -   V   s   eniiafo   rod flyio   on/)   »   .   r   « 

-(square residue). In such a GF(p), the additive inverse of a square 

residue is nonsquare and vice versa. This follows because in such GF(p) 

-1 is a nonsquare residue and if x is a square residue, then (-l)(x) = -x 

is a nonsquare residue. (See Theorem (l)). Hence x > y => y < x . The 

converse is proved similarly. 

Theorem (3). If ff € GF(p) , then c?  ■ (-<y)8(mod p) . 

Proof. From the above theorem, ve know that if a « v" and -a' « v* 

then n - m « (p - l)/2 (mod p - 1) . Hence, since a3 = v8n , (-a)3 = v8" , 

ve have 2n - 2m = (p - l)(mou p - l) s 0(mcd p - l) . 

8 i 
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Definition (2). Define an "absolute value" function in the following 

vay. If or 6 GF(p) with p = 8 n qt- 1, then \a\ - a if a* is a square residue 

and |Off = -or if or is a nonsquare residue, Theorem (l) provides the justi- 

flcation for this definition. 

Theorem (h).    Let x € GF(p) (p j£ 2) be a square residue. Then there 

exist two elements a,b € GF.(p) such that a2 a b3 '» x(mod p). Furthermore, 

k 
if p » 8 II qi -1> then a and b are of opposite parity and are additive 

i=i 

inverses of each other, a + b s O(raod p) . One of the two, say a, is 

square and the other b, is nonsquare. a is called + /x . 

Proof. Let us first prove there can't be. three elements all of 

which square to the same value. Assume 3 three distinct elements 

a,b,c € GF(p) 3 as a ba a c8 ■ x(mod p) . Then a8 - bs « O(mod p) and 

a8 - c3 £ o(mod p) , or (a + b)(a - b) a o(mod p) and (a + c)(a - c) « 

a + c = O(mod p) . But in a     field, the additive inverse is 

unique, so b = c(mod p) which violates assumption that a,b,c are distinct. 

Wow prove 3 two elements a,b 3 a8 £ b8 s x(mod p) . There are p - 1 

distinct nonzero elements and (p - l)/2 distinct squares in GF(p), p / 2 . 

Since there aren't three elements having some squared value, there must 

be two such distinct elements for every square x. 

From a3 - b8 = (a + b)(a - b) s 0(mod p) and a fc b(mod p) we see 

that a,b are additive inverse. If p * 8 n qt - 1 , we may invoke Theorem (i), 
j «l 

to conclude they are of opposite parity. 

\J 
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0 
k.    LOCAL "ORDER" 

0 

Let us consider some arbitrary x € GF(p) . We know that 

(x + 1) - x «= 1 « square residue; hence x + 1 > x . Similarly, 

x-(x-l) = l,orx>x-l. Also, (x + 1) - (x - X) - 2 = square 

residue, so that x + l>x>x-l. Clearly this process any he 

continued for q^ consecutive elements to generate the following order 

relations: 

x - (q* - l)/2 < x - j[qs - 3)/2 <...< x + (q* - i)/2. 

Let us designate this set of q^ consecutive transitively ordered elements 

that is centered about x by Toss (x,q,f). We shall consider 

X + 1 , ... , x + (qjc -1)/2 as all "positive" with respect to x while 

x ~ 1 , ... ' , x - (qk -l)/2 are "negative" with respect to x. It is 

important to realize that the terms positive and negative express a 

relation that is referred to some specific point, not necessarily the 

additive identity 0. In order to perform calculations we must be sure 

to refer to this central point x. This is done by counting the number 

of steps "above" or "below" x for any member of Toss (x,qk), •   Thus, 

if a,b € Toss (x,qk) , we have the sum as (a - x) + (b - x) + x , etc. 

Clearly this is the well-known transformation of linear translation. 

Thus, vith the above identifications and definitions, we see that any 

point x 6 GF(p) may serve as the center of a Toss (x,qk). Thus whatever 

"geometry can be done at one point can be done at any point. Therefore 

we have shown that 

3 

10 
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0 Theorem (5). Any point x € CF(p) can be the center of a Toss (x,q..) 

and geometry* can be done locally within this set. 

To simplify calculations we may assume that x = 0 is the chosen 
« 

center, thereby avoiding the extra terms of a - x , etc. However, we 

must remember that the choice of center point is arbitrary and the 

geometrical results obtained in one Toss are equivalent to those found 

in any Toss in the field. 

Since we are defining a vector space over GF(p), we may generalize 

this discussion for n-dimensional vectors and let the center become a 

vector x = Essentially this is a succinct formulation of n 

distinct centers, one for each component. 

5. EXTENSION OF THE FIELD 
8 

Let GF(p) be a Galois field. We knot? that (p - l)/2 elements are 

square and (p - l)/2 are nonsquare (see Theorem (k)).    The (p - l)/2 

square elements all have two square roots in GF(p) whereas the nonsquare 

elements do not have a square root in GF(p). If p = 8 ft q£ - 1 > then 

the two roots of the square elements are related by + </x + (- /x)  a 0 

and + v^>0,-/ic<0. To obtain square roots for the nonsquare 

elements we must embed GF(p) in a larger field GF(p3) which is the exten- 

sion of GF(p), i.e. we obtain GF(ps) from GF(p) by adjunction of a root 

of xs + 1 s 0(mod p) . GF(jf) becomes isomorphic to the set of first degree 
polynomials 

11 
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a + bx where the coefficients a,b 6 CF(p) . Clearly there are p3 elements 

in GF(p). TO simplify comparisons with "ordinary" mathematics, let us 

denote.the lnäeterminant by i. Since i2 + 1 fc 0 we have ia 2 -1 , and 

a + ib € GFCP3) • Let us now find square roots of the negative elements 

k 
of GF(p). Let x € GF(p) p - 8 II q« - 1 be nonsquare. Assume an element 

i =i 

a + ib € GFd2) as the square root of x. Hence a + ib s Jx    or x s 

(a + ib)? s a3 - b3 + 2iab . From this ve see that ab a 0 =» a a 0 or 

b s 0 . Also have a3 - b3 s x . If b a 0 , then b3 = 0 and x « a2 

vhich violates assumption that x is nonsquare. Hence a a 0 and x = -b2 

and b3 s -x . We know that x < 0 => -x > 0 so b s + /^P .    Hence 

/x a ti/^x1 which conforms to our prior expectations. Thus V x € GF(p) 

3 z € GFCP3) 3?.2=X .9 

Since (p2 -  l)/2 elements of GF(p2) are square and (p2 -l)/2 are 

nonsquare, we see that a square root for elements of GFd3) can be found 

for some of the elements ((p2 - l)/2 of them). This can also be seen 

since there are two square roots for each x 6 GI«'(p2) (x fi 0) and this— 

due to uniqueness properties—implies that only half the nonzero elements 

can have square roots in GF(p8). This is yet another way in which the 

finite field differs radically from the continuous field where every 

complex number has two square roots in the complex plane. In finite field 

mathematics we are able to count according to the customary rules without 

encountering the unusual characteristics of the transfinite arithmetic. 

Theorem (6). If p - 8 II qt - 1 , then xs + 1 is irreducible over 
  1=1 

GF(pa). 

12 
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a a 
Proof. Assume x + 1 is reducible over GF(p ). Then 3 a,b € GF(p) 5 

a a 
x + 1 B (x + a)(x + b) £ x + ab + x(a + b). For this to hold, we «ust 

I have 

ab s i  and  a + b s 0. 
a      a 

This implies a + ab e a +120. In GF(p) of the above form, there 
a 

exist no solution to this because -1 is nonsquare and a s -l cannot be 

solved. 
it a *  a 

Theorem (7). If p = 8 II qt - 1, then x + 1 is not primitive in GF(p ), 
          i»i . 

• 2 3 
Proof. For such a p, we always have p > k,  yet x + 1 divides 

4 ' a a 
x - 1 ; hence x + 1 cannot be primitive because its order is less than p . 

10 \ 
Beltrametti and Blasi have shown that for a p of the above form, 

P 2 t t t 
i = -i j if a,b € GF(p ), then (a + b) = (a + b ). Therefore if 

p 

a,b € GF(p), then (a + ib) = a - ib ; hence complex conjugation can be 

th * associated with the p  power of a "complex number." Define Z such that 

We follow reference '* and define the absolute value in an obvious way, viz, 

V z € GF(p ), |z| - yz*z  = /zp+i . If z = a + ib, a,b € GF(p) , then 
2 2 

|z| = /a3 + b5 and we see that V z <E GF(p ) 3 |z| 6 GF(p ). This is 

somewhat unfortunate because the absolute value function is generally 

considered to be a mapping from the complex plane onto the positive real 
a 

line. In our case, this becomes a mapping from GF(p ) onto the square 

residues of GF(p). As before, we can achieve such a condition over a 

subset. Let S(x,qk) = {y : y 6 Toss (x,qk) and 2y € Toss (x,qk)} 
, 8 
(remember 2y to be performed with respect to the center, x). For 

simplicity, consider S(0,qk). Define C(S(0,qk)) = {z : z = a + ib , 

a,b eSJ(0,qJ). Then V z € 0(3(0^))  |z| € GF(p)  and  |z| = 

square residue. We may generalize our definition to include the 

13 

A« H   ' 



■  ■  -i. ■,.■■■>■: ■  . 

replacement square roots to find (see section 7). 

|z |8 = Qz*z J   .        . 

"* 
In terms of this definition, |z|„ is ordered, etc. over an appropriate 

subset. Thus, we can introduce a length notion over part of GF(p ). 

1*4 
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6. SqpARE ROOTS AND INCOMPIETENESS 

We have seen that for any GF(p), there are (p - l)/2 elements 
* 

s 
that do not have square roots in GF(p). If you embed GF(p) in GF(p ), * 

then each of these (p - l)/2 elements has a square root in GF(p ). 
22 

However, in GF(p ), there are (p - l)/2 elements without square roots 

in GF(p ). This process continues for all finite fields, the richest 

always failing to contain square roots for about half its members. This 

is a form of incompleteness that is somewhat reminiscent of the Godel 

type incompleteness. Godel showed that within any formal system at least 

as rich as arithmetic, there always exist statements whose truth or 

11 
falsity depends entirely upon the truth or falsity of a meta statement. 

Hence the status of certain statements cannot be determined within the 

system. The square root situation is much the same^ for every system 

%
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square root completion. It should be noted that an infinite field is not con- 

sidered to display such behavior.In fact the complex plane is purported 

to contain the square root of every one of its elements. This is another 

example of the curious counting results one encounters when dealing with 

infinities of numbers.  However, if the infinite field is obtained 

from a limiting process of successive imbedding, of finite fields, the 

cited property of the continuous complex plane will not appear for any 

finite part of the limiting process, 

15 
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7. REPLACEMENT TECHNIQUE FOR SQUARE ROOTS 

Let us concentrate our attention upon the ordered subset centered 

about 0, i.e. Toss (0,0*). We are going to be concerned vith those 

elements in Toss (0,qk) that in conventional number theory are known as 

perfect squares, viz. 0, 1, k,  9, 16, ... . Let Toss+(0,qk) » 

{0,1,2,...,(a*-l)/2} , i.e. the "positive" elements of Toss (0,0^). 

Let us construct a set iXq*) as follows. Let 0 € T(qk) . Then let 

(0 + 1) 6 r(%)  if (0 + l)a € Toss* (0,0^) . Continue in this until the 

first time that (0 + 1 + ••• + l)3 £ Toss^O,^) . Then the n elements 

n+l   tlaes 

16 
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0?,la,2*,...,n3 will constitute I*(qk). Let us arrange and number the 

elements of T(qk) so that Yo = Ö
3 , Yi = la , etc. 5!nen we have 

%  < Yv < Y3 <- * *' < Y„ where y» is the largest "perltet square" in 

Toss*(0,qk). Let sCq*) « {x : x € Toss+(0,qk) and x s Y«} • Thus for 

the elements of r(qk ) we have the square roots lying in the s*" order 

as the squares, clearly a desirable situation. Unfortum-ely the formal 

square roots of the elements of S(qk) not in rtq^) do not exhibit this 

property. We shall impose the additional condition that the squares and 

square roots of S(qjc) lie In the same order. Since we cannot obtain an 

acceptable solution—acceptable with respect to the criteria established 

above—we shall replace the problem by one that we can solve within the 

framework. 

Let x 6 S(qk ) , x i TCq* ) . Problem (l) is to find y € S(qk ) 3y
s~x . 

If»f S(o.) nnd x f r(n..) , then Si(if fO.1,2, n-1}) 3Y,<X<YU; . 

We shall replace problem (l) with /Y1+1 6 S(qk) and designate the replace- 

ment by (/x|R. Clearly, if x € r(qk) , then (»/x)R = /x (where /x has its ordinary 
definition.). 

We have replaced problem (l), vhich does not have an acceptable 

solution in GF(p ), by another problem that does admit of solution. We 

again see that going beyond Toss (0,qk) leads us into a realm of uniter- 

pretable results. In effect, this corresponds to going beyond the 

capabilities or resources of the given GF(p ). 

Theorem (8). 1. V x 6 S(qJ , (/x)R 6 S(qk) 

2. If x,y € S(qk) and x ■& y , then (/x)R ä (>/y)R 

3. If x,y € S(qk) and (/x)R < (>/y)R , then x < y . 

O 

17 
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proof.    Property 1. follows immediately since the Yi vere chosen to 

be those elements for which /y[ € 8(0^)  .    For property 2., let Yi  " 

min   \ z x .'  Then Yt-i < x £ yx   , and (/x)„ = Yi   •   Since y ixve know 
YQ*{qk) 

that either x £ y s Yi or y > Yt • If X & y £ Yt * then (*^)R = (^)R = 

•Yi • If y > Yi > then (/y)R = 

/Y7 where Yj > Yi i  hence, x £ y implies (/x)R s (/y)a . For property 3., 

let /Y7 = (</x)R and /YJ = (/y)R • Since (/x)R < (/y)8 , ve have Yi < Yj • 

We also have Yi-i < * ^ Yt önd Yj-i < y £ Yj • Nov, Yt < Yj implies 

Yi * Yi-i > hence x s y, s Yj-i < y and x < y . 

Note that (/x)„ £ (</y)R does not imply x £ y . 

Theorem ( 9). Let x,x8 € S(qk ) vith x fi 0 . Then (/x3 - y)R » x 

if and only if y 6 [0, 2x - 2] (here [ ] has usual definition). 

Proof. If (/x2 - y)R = x , then (x - l)2 < xa - y £ x3 . This . 

implies that y € LO, 2x - 2] . Conversely, assume y € [0, 2x - 2J . 

Since (x - l)3 = x8 - (2x - l) < x3 - y ä x3 , ve have x ■ (/x2 - y)R . 

Theorem (X0). V x € S(qk ) , [(/x)R)
3 s x . 

Proof. Let /Y7 « (v/x)R . Then, if x ^ 0 / Yi~i < x s; Yi -  (/Y7)3 ■ 

I(/x)R3
3 . If x 5 0 , the theorem is obvious. 

Theorem (li). V x,y G S(qk) D xy G S^) , (/xy)R £ (/x)„(/y)R • 

Proof.    Let /Y7 = (/x)R and /YJ 
S
 (/y)R   •    Then, if x f- 0 , y fi 0 , 

Yi-i  <xs Yi  and Yj-i < y ^ Yj   •    Hence, Yi-iYj-i  < xy £ YiYj   •    Therefore, 

(/*y)R s: /Y~Y7 
B
 /YT </YJ 

a (</x)R(/y)R   .    Once aßain, if x s y s 0 , the 

theorem is obvious. 

1 
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8. EMBEDDING • 

If ve vish to find another problem that Rives a "better" answer to 

replace Problem (l), ve must expand our field by embedding GF(p^) in a 

field GF(PK>) vher'e k' > k . Because of its greater richness GFdy) can 

provide substitute problems that "more closely approach" Problem (1). 

Let us choose Pjjf such that p^/p* -  100 + R vhere R > 0 . Then ve 

shall identify every 100  element (up to 100qk) of S(qki) vith the elements 

of S(qk ), i.e. if z' € S(qk«) and if x' = 0  (mod 100), then 3 x € S(qk) 9 

x -» x.'. . Mow ve can pose Problem (l') vhich is to find /x'  € S(qk») , 

(x' «-x € S(qk)). Again replace Problem (l') by finding Y*' € Ffq^ ) 9 

Yi-i < x S Yi. Again introduce the replacement problem and a soluable 

problem in GFCptf ). Then, using the relation x ■♦ x', ve associate a solution, 

say Yj » vith Problem (l) by the decimal version cf ~L And if greater 

resolution is sought repeat this process to GFfp^ ■ ), etc. 

Example. S(ll) '■ [0,1,2,...,9). Find /f. Replacement problem yields 

(/T)R *♦ 3. Go to richer field vith S(ll09). Then 676 < 700 < 729 «• 

(/T)R ■• 2.7. 

In this vay ve have established a procedure that serves to define 

acceptable square roots to vithin any desired "resolution" or order of 

refinement. Let us point out that embedding is a form of replacement and the 

identification of 1.0 vith 1.00 is a matter of pure and arbitrary convention. 

We could—in principle—associate 1.0 vith any number, say 6.25, but that would 

violate standard practice. The only theoretical requirement is that every 

element in the coarse field be mapped nonabiguously onto an element of the 

finer field. 

19 
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9.    ALTERNATIVE REPLACEMENT TECHNIQUE 

Instead of "rounding up" as we have done, one could "round to closest 

neighbor." This changes the form of the theorems and the triangle inequality 

is lost; however, there, are certain aspects that are quite desirable. In 

this section, we shall just present the definition. 

Let x € S(q.J 3xj^ T(qk) . Then U6 [0,1,.. .,n-l] 3 yt < x '< Y1+1 . 

Form the differences d+ = Yi+i - x and d~ = x - Yi • Clearly d+ and d" € S(qk) 

so are unambiguously comparable witli our order relation. Let us designate 

the replacement square root of x by (/x),, . Then, the following will serve 

as the definition of (y/x)R .  Let /x  designate the positive Galois field 

square root. 

Definition. If d+ > d" , then (/x)R = /YT ; if d+ < d' , then 

(/*)R = /YJ+I • 

Since (H + l)3 - Na « 2H + 1 , there can be no x 6 S(qk) such that dt » d" 

and ve have an unambiguous formulation. If x 6 T^ ) , then (/x)„ = /x . 

In the subsequent development we shall restrict our attention to 

the computationally simple "rounding up". However, we must first 

demonstrate that this choice does not unnecessarily prejudice the 

conclusions. Ihus let us show that the three possible replacement 

techniques lead to essentially equivalent results. 

See Appendix I. 

20 

K Ü ■^Sk* v., ^m$m% , Mm 



iE 
-f-«i=s  

tv-sm 

Q 

1 •' 

:o 

5 

10. GALOIS FIELD GEOMETRY 

12 
A vector space defined over a Galois field cannot have an inner 

* 

product with all of the customary properties because of the lack of transitive 

order in GF(p).However we shall generalize this notion to what will he 

.called a Galois product in the hopes of introducing a concept of direction. 

Definition ( 3). Let V be a vector space of columns defined over GF(p). 

Let [x,y] « xfy define a Galois product V x, y € V. If [x,y] s o we shall 

call x,y orthogonal.        • ' ■      , 

Theorem (12). The Galois product satisfies the following conditions: 

1.' [x,y] € GF(p)  V x,y € Vj 

2. [x,yj » [y,x]  V x,y € V} 

3. [x,oy + ßz] « or [x,y] + ß [x,z]    V x,y,z (E V, V or,ß G GF(p). 

■#flÖ 
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Proof. 

Let x = 
V 
• 
• 

IV 
, y = ß2 

• 
• 

•   ß. 
-               mm 

» z = 
V 
• 
• 
• 

Y« 

where 

the fft, ß|, Yi € GF(p). Then [x,y] - £ o^, etc. Hence 1. follows from 

closure of CF(p) under multiplication and addition. Similarly 2. follows 

from commutativity of multiplication in GF(p). Finally 3- follows since 

multiplication is also distributive in GF(p). 

Let us now study the relationships between linear independence and 

the Galois product. 

Theorem (13). If [x,x] f 0 and coc s y, a f o where x,y € V and 

a C GF(p), then [x,y] f 0. Thus linear dependence iiaplies a nonzero 

Galois product. 

Proof. [x,y] £ [x,ox] = o{x,x] f 0. 

Theorem (jU). If [x,y] = 0 and [x,x] f 0, Ey,y3 f 0, x,y € V, then 

x and y are linearly independent. 

Proof- Ißt us seek two scalars o,ß f GF(p) such that <x x + ß y = 0. 

Operate on this equation with xT to obtain a xT x + ß xTy s a [x,x] + 

ß [x,y] ■ or [x,x] ■ 0. Hence, since [x,x] f 0, a = 0. Operate similarly 

with yT to find ßM, Therefore x and y are linearly independent. 
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11.    HCBM AMD MEfRIC 

o 

Let us now combine the above results and define a region over which 

an inner product and norm can be identified. Let Efq*) = Toss (0,qk ) be 

the transitiw  ordered subset of GF(p). Let V be an n-dimensional 

vector space defined over GF(p). Define a subset of E(qk) as 

9 
•   F(<lk) -lot: or € E(qn) and n or   < q*}. 

Define a region of V by 

P = {x: x € V, x = 

On 

>   0i><»3,•••>«..   €  ?(<k))' 

xheorera (ip).    V x t *', LX,XJ «= 0; - 0 ill' x = 0. 

<%      J <*\ >°k >' • • >an € F(q»-. )•    Then we have Proof.    Let x = 

a* 

* 8 4- 
[x,x] * S (arj) .    Let F (<&) = {a: a € F(qj<) and o- s 0}. 

i=i 

2 , 2 
Clearly (at )    € F (q^) (i = l,2,...,n).    Since n(ort)   < Ojc, the 

v * 3 4. 
sum of E (o-i ) is still in F (a*), i.e. transitivity holds and we can 

i =1 
2 

sura the inequalities 0 ^(orj)   < qk to obtain the theorem. 

- * »J«J»- |nnpnmp«y A^^.-«-?»«—««»» 
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The set P is not a isttbspaee of V because it is not closed under 

vector addition or scalar aultiplication. Thus vhen fonaulating certain 

theorems additional restrictions are needed to insure that operations do 

not carry beyond the limits of Pint) the set V-F. Thus, for example, 

the condition [ooc,x] = o{x,x] is valid over V and GF(p) but the condition - 

fncvjox] * 0 is valid only for those a € GF(p), x € F 3 a x 6 F. 

Theorem (l6). If a € GF(p), x € F and or x € F, then [ox,ax] £ 0; s o 

iff x «s 0 or a = 0. 

Proof. Follows immediately from Theorem (.1 ) with ax replacing x. 

Theorem (n).    If we restrict ourselves to operations involving 

elements of F that do not produce results out of F, then the Galois product 

becomes an inner product over F. 

Proof. From Theorem (12), we know that the Galois product satisfies 

all DUO xhe condition that (x,x) *  u, = 0 in x = v oi tne aeiinrcion oi an 

inner product.    Theorems  (ljj) and (l6) insure that this'condition is also satisfied, 
3   * 

let }l(qk) = la: a € *](<&) and ^n a   < <&)• 

Let II » {x: x € V , x = a-, 

an 

, o^ ,<&,...,an € H(QJ:)}. 

Theorem (]S).    If x,y € H, then [x,yf * [x,x][y,y]. 

Proof.    Let x = 

a„ 

, a,,ßi,.€ Hfoj,) (i B 1,2,:..,n). 

rM 
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r\ We have that 0 * E     £ (alßl - ufix ) .   this inequality holds because 

hy the definition of iKqj), each terra is nonnegative and their   sum 

stays within E<qk).   We »ay expand this inequality to obtain 

* [ SoiM* * Mai)* £ (ß,)2. 
»*=i »si »*=1 

In terras of x and y, this is equivalent to [x,y]    £ [x,x] [y,yl. 

Theorem (19).   If x,y € H, then [x,y3 * (/[x7xl)a  C/TyTyT),,.' 

Proof.    From theorems (8 ), ( .9), and ( 18), we find [x,y] £ (/Lx,xJLy,yJ)P 

and from theorem (8) (/TxTxJI yTyXT« * («/[x^x]")«  (/Ty7y7)R. 

Definition (.h).    Define a mapping from F into GF(p) as follows: 

vx e F, || x || = c/nr^T)R. 

Theorem (20).    || x |j i 0} K 0 iff x B 0, V X € F. 

Proof.    The proof follows from theorem (15) and the definition of 

Theorem £l).    || a x || 2 | a |  •  || x ||   V x € F, V a € GF(p) 3ffxfF. 

Proof.    || a x || » (/La>:,ftxJ  )„  = (ArHx,xJ  )„ a (/*HR (/[x"^] )R 

-|«|  •  ||x||. 

Theorem ( g^.    V x,y € H 3 x + y € F, || x + y || =s" || x || + || y ||. 

**<><*•   (II * II + II y IDS * (Ax"^J)ft + (/TyTyT)« + 2(v4^xT)R (yTyTyl)« 

Theorem (10) « * [x,x] + [y,y] + 2(v/[x7xT)ft (/Ty^y] )R 

-   Theorem (11) * * [x,x] + [y,y] + 2(/U,xjiy,yJ )R 

Theorem (18) » a [x,x] + [y,y] + 2(/TxlyF)8 

1 Theorem (.9) » = [x,x] + [y,y] + 2[x,y] 

* « [x+y,x-iy]. 

£5 I 
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2 
Therefore,  (j| x |j + || y |j)    it [x-»y,x4y] which implies—from theorem (8 ) 

that 

(AIM + llySin»  ^(Ax-iy,x,yJ)R. 

From theorem (9 )and definition ("**), ve have 

II x II + || y || HI x + y ||. 

Definition ("5). Let p(x,y) = || x - y || V x,y € P 3 x-y € F. " 

Theorem (23). 1. p(x,y) ä 0; s 0 iff x = y. 

2. p(x,y) « p(y,x) 

Proof. Property 1. follows immediately from theorem (20) v/ith 

X-y identified with x. Property 2. follows since p(x,y) -  || x - y || - 

(/U-y,x~yJ)R = (/Ly-x,y-x])R = p(y,x). 

Theorem (2U), p(x,y) + p(y,z) * p(x,z) V x,y,z € H 5 x - y, 

x - z, y - z € H. 

Proof. V.'c shall use the results of theorem (22). p(x,z) = 

II x - z || = || x - y + y - z || £ |j x - y || + || y - % \  == p(x,y) + p(y,z). 

Thus we see that p(x,y) satisfies the definition of a. metric, over the 

set H. 

L<S 



12. Hormon 

t In addition to the basic Metrical properties of geometry that have 

already heen presented, we shall-   seek a mechanism for generating & 

• concept of rotation. There has been prior vork in this direction, 

generally by introducing finite groups of transformations that preserve 

\/j some appropriate quadratic fonn 13«       For example, if dealing 

with a four-dimensional space, one can introduce a metric tensor of the 

form 

g = 

-10 0 0 

0 10 0 

0 0 10 

0 0 0 1 

0,1 € GF(p) 

and define a bilinear form x • y ~ xTgy . This is in direct analogy vith 

* the conventional formalism of modern physics. However, this procedure 

does not directly consider the problem of interpretability, especially that 

ciated vith the ordered subsets that play such an important role in our 

development of finite geometry. Hence we impose on additional condition 

that a subset of all such transformations be found that transforms vectors 

(J      from F(qk) into vectors of F(qk) (we might further restrict to H(qk ), 

depending on the context). 

We have devised a finite algorithm that generates transformations 

Ik 
'        that "rotate" vectors of the ordered grid into other such vectors. Since 

.        it is a constructive procedure, it offers immediate insight into the 
* 

i structure and consequences of a finite and discrete geometry. 

The rotation technique consists of adjoining integer sided right 

trianglesJ about some common vertex so that the hypoteneuse of one and a 

leg of the other are colinear. The-common vertex is generally considered 

r»7 
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to he the oriel*. If the triangles are suitably chosen, then the 

vertices are always realized at points of the discrete Grid. Clearly 

this is a necessary condition. In order to guarantee that this is 

satisfied, one must have the grid sufficiently rich, i.e. with suffi- 

ciently many points. The adjunction is viewed conceptually as being 

performed via successive embedding in richer, i.e. more "closely" 

packed fields. Thus, if h is the number of counts of the hypotenuse 

of the first triangle as seen in field F1, then this saue "se-.uent" 

should he h" counts when referred to the field ]•* which is required 

after n adjunctions. In other words, we require an ever richer field 

-- j;-~~ _.C^„  i,^.i.'_, .    Z.J      .4»—vU  ,«£.£.»..«.»,«»..-.«*».  ^   w.J-k, 

procedure, ve may generate rational expressions of arbitrary rotations. 

If we let our "unit" triangle be thin, i.e. if the ratio of the legs is 

small, then ve can approach any "angle" of ordinary rotation by repeated 

adjunction of this one triangle. In this case \/hen the same triangle is 

used, then the sum of the squares of the coordinates, vhen referred to 

the richest field, is a conserved quantity. This case fits into 

the lormat of the above described systems. Hence ve have generated a 

subset of the formal and global definitions of rotation. As has so often 

happened in the development of finite field geometry, one can introduce 

interpretable objects locally, not globally. 
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Another interesting and potentially far-reaching point to mention 

it the following. It is found that each successive adjunction requires 

a richer field if one is to refer the results back to the original 

orientation. Obviously, this process can continue only so long-before 
i 

one exhausts his capacity to further enrich the field. At this stage, 

one must either cease or drop the requirement of remenbering exactly 

what the original orientation was. In ths latter case, one can either 

eliminate the record of the original state entirely or introduce a 

probabilistic formulation that enables one to go further, although 

without a deterministic description. The probabilistic method does 

enable one to further extend his capabilities. However, both solutions 

ultimately lead to complete renunciation of strict determinism in des- 

cription; hence, the predictative capability is likewise lost. It is 

conjectured that this failure to achieve a purely and exhaustively 

deterministic description might be the source of the quantum mechanical 

behavior so well known in the realm of atomic phenomena. 

When the numerical capacity is exceeded, there are ways to retain 

some control and information by reducing the resolution requirements. This 

can be done by introducing a hierarchy of counting that no longer carries the 

lowest decimal. For example, an automobile odometer can register more than 
5 

10 miles if, after reaching 99,999, we change the gear ratio by a factor 

of ten. We forgo knowledge of the tenths place but obtain capacity to 

count hundred thousands. And this hierarchical embedding can be repeated. 

29 
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13. MATHEMATICAL INDUCTIOH AND PASSAGE TO HE LIMIT 

One of the many implications of the local ordering concept is the 

distinction between "for any" and "for every." We can declare an origin 

at any point in the space and do geometry locally; hoaever, this does 

not imply that we can do geometry at every point referred to this one 

origin. Mathematical induction asks If the validity of P(n + 1)  follows 

from the assumed validity of p(n) and the demonstrable validity of P(l) 

P(n) assumed true and implying the validity of P(n + l) is a local 

30 
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demonstration that can be performed anywhere, i.e., at any n. However, 

from this local property the conventional assumption is global validity. 

On the other hand, since this entire process is highly similar to our 

local order concept, we are led to inquire whether mathematical induction 

is also limited by the local vs. global distinction. If so, then the 

principle of mathematical induction must be reevaluated to incorporate 

the results of a local ordering relation in a finite field. 

We have found that any demonstration (from the finite context of 

the view taken in this paper) of the validity of mathematical induction 

requires an additional axiom regarding the existence of a "continuous'" 

field. This is consistent with the findings in the early 20th century 

17 about the necessity of an axiom of infinity. 

In order to develop these ideas more fully, we must first examine 

an extralogical requirement. 

This paper begins with a primitive commitment to finitism and we 

have attempted to demonstrate the theoretical possibility of performing 

certain operations wholly within a finite context. Now we must invoke 

another primitive commitment and can only briefly motivate its intro- 

duction. Procedural invarianee is an extralogical requirement (see 

reference 18) that is essentially a generalization of the Einstein prin- 

ciple requiring invarianee of physical laws under appropriate transforma- 

tions. A rational system that leads to a prediction or prescription 

that is not invariant under the arbitrary procedures of analysis and 

computation is inherently ambiguous, i.e., the system should not have 

its results depend upon the computational path that is chosen. The 

choice of convention should not determine the answer. If it does then 
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the results cannot be unique. In general, the preservation of consis- 

tency under alternative, arbitrary procedures is a categorical require- 

ment, i.e., a system which does not preserve consistency under arbitrary 

procedural convention is a fortiori inadmissible as a rational paradigm. 

We shall now consider "passage to the limit" and mathematical in- 

duction to see what effects the demand for procedural invariance brings. 

In general, there are different limiting procedures that are not in 

agreement because a discrete grid, no matter how fine, is qualitatively 

different from a continuous line. There is no gradual transition which 

transforms all of the properties of the finite system smoothly into the 

properties of a continuous system; some of the properties of the con- 

tinuum appear abruptly only when the embedding reaches the ultimate 

transfinite stage. 

HonsifW three alternative conventions to govern mathematical in- 

duction. Let P(np,p) be a proposition that is consistent with a set of axioms, 

G, where n_ € GF(p). Let n  (p) denote the largest count in GF(p), i.e., 
JuELX 

starting with 1, n     (p) is the element such that the successor to n     (p) 
nt&x HX8X 

is zero, i.e., p - 1.    Let n     (Toss(p))   be the number of elements or size 

of Toss(p).    We shall look at P(np,P) as np and p increase. 

(i) Conventional or Customary Mathematics:    Let p -» "«" =» Vp, 

np < n     (Toss(P)).    This corresponds to the construction 

of a continuum by indefinite embedding and generates a 

countably infinite set of trantitively ordered numbers. 

"1 
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the validity of the proposition P f c then investigated 

tqr conventional logic in the context of continuous space. 

This procedure generates the well-known (and sometime counter 

intuitive) results of mathematics. 

(II) Fixed Cognitive Agent: Keep np € GF(p) out let np > nmax(Toss(p)). 

In this case induction on P(np»p) leads to results which are not 

interpretahle within the context of the fixed cognitive agent 

i.e., the results are relatively indeterminably and chaotic. 

We describe this result by P(np,p) -» X where X is seme 

unexpecfr 1 proposition not necessarily consistent with G. 

(Ill) Indefinite Finite Embedding: Let np and p increase so that 

np € Toss(p); then perform induction. In this case the 

resultant proposition is determinable and consistent with 

G. Unfortunately, this procedure is limited to the resources 

that can generate ever larger p's. Hence, when the "largest" 

p is reached, i.e., when the capacity of the system is 

exhausted, then case (ill) -» case (ll). We observe that 

prediction in any substantive system (including that of 

the physical universe) ultimately exhausts its numerical 

resource. 

Of these procedures, case (i) is the conventional one; case (ll) 

is more appropriate to any actual finite system, and case (ill) is arbitrarily 

constrained to remain within system of adequate numerical resources and 

thereby investigate only the determinable properties of mathematics.' 
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Illustrative Examples * * 

Example A: Convergence to a Point 

Consider the function P(m) = l/m. We desire to define the limiting 

process designed by 

Mm P(m) 

m •*       , 

vhere m •* indicates that m increases under that appropriate condition of 

the respective procedure. 

Under procedure I we have 

Lim P(m) = 0; - 
m *» • 

:, 
Under procedure III we have a two-stage process 

Lim P(m) = e(p) 
m -» n(Toss(p)) 

Lim c(p) = 6 > 0 
P *• 

We note that 6 moves arbitrarily close to zero i.e., 6 < «> where 

M is any number from any Toss(p); however great. 

We may say that "6 convergences toward zero" and may be made to lie 

within any arbitrarily small neighborhood of zero, i.e., the limit is not 

a member of the sequence (cf. definition of a Banach Space and the closure 

requirement). 

Under procedure II 

We execute the first stage as above in procedure II; then carry 

the limiting process through the transitivity ordered numbers: 

Mm p(m)      = c (n  ) 
n "* nmax^Toss(p^ 

3»» 
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During the Halting process c (n) decreases to a minimum value 

l/n  (Toss(p)). Hext we execute the second stage by replacing n by the 
max 

successors. 

Then "increase" n Toss(p)) by successive steps defined by the 

process: 

n' = n + 1 

Since n + 1 and subsequent numbers are outside of Toss(p), e (n') 

suddenly escapes the neighborhood of zero. If limited to the numerical 

resources of a fixed Toss(p) of GF(p) the value of e (n') is undeterminable 

and may be any number. Here the limiting process,"as n increases, behaves 

in a determinable manner and the value is restricted to a smoothly decreasing 

neighborhood until n exceeds n  . The value then takes on unpredictable 
JILcLX 

values including some of which are not interpretable. 

Example B: Relativistic Properties of a Random Walk in 
Finite Space* 

Consider a one-dimensional discrete space and a point executing a 

random walk. The probability of moving one space position to a 

contiguous position of higher index is p, converse q, p + q = 1. Let 

k designate the index of the point, and let n be the number of steps. 

Let P(k,n) be the probability that the point is at the k  position after 

the n  transition. 

* 

This example is taken from an earlier work by one of us (NMS) reference 
19 and is a simplified version of a more general viewpoint in which the 

• embedded discrete space points are implicit. In order to preserve 
consistence under a velocity formation it was demonstrated in the reference 
that it was necessary to introduce an imaginary component of transition 

. probability in order to achieve 6-dimensional rotational transformations 
u (one time dimension for each space dimension). The resulting transformation 
' was shown.to be the Lorentz-Fitzgerald transformation of relativistic 

physics. 

35 

l?'":^?^*^fj^i^^ j.y.M^Mg^^gM»^'1^ '"i"1 ■iwnifni m**mmmm&-*i**mrim*»+*vwmf*»><' <mm4m**m*m«w»~* - t* 1 
JL* 



Given 

P(0,0) * 1, we may show that 

P(n,k) = 

n+k! n+k n-k 

n-k 
2 I 

2  2 
P  q ' ; £ P(n,k) = 1, 

is a binomial distribution which extends + n either side of k = 0. 

We may also show that the first moment, k = EkP(k,n) is: 

k = n(p - q); (l) 

and that the variesie is 

2 s 
a (k,n) » £ (k - £) = Unpq. f2) 

k 

Furthermore, since p - q = constant = ß and p + q * 1, we have 

o8(k,n) = n(l-ß3); (3) 

the ratio of a(k,n) f or ß / 0 to Ob<(k,n) for ß = 0 is 

-^=d-ß2)2. PO 

We interpret the transition to result in the change of One space quanta 

and the corresponding time to change one time quanta. In terms of measures 

from some much finer embedding, one space quanta represents a change in 

a distance of A, and of time, T. The mean position of the point is given 

x = fcA = nßA 

and the time t, by 

t ss nj. 

The speed of the expected position, v, is given by 

v - | = |^ ; and a3(x) = n(l-ß2)A3. 
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The random walk exhibits relativistic properties, voider the interpretation 

that K determines the position of F(k,n) and that o determines its size. We 

note that the speed is limited tc a maximal quantity, and that the size 

contracts in the direction of motion as in the Lorentz-Fitzgearld 

contraction. The maximum velocity, v  , is given by 

o  i J   »_     -   nA  A ß ■ 1, i.e., by v v ■ c = ~ = ~ *        max     nT  T 

and the size, a, becomes 0 at ß = 1. for all n. 

We now examine these relativistic properties as the embedding of 

finite spaces becomes a continuum by permitting A -» 0. This is not a 

uniquely determinable procedure. We can at most, preserve three properties 

(since P is a function of k, n, and ß) of the distribution, P(k,n). It 

is not possible to preserve all of its properties. The properties we select 

for    presentation are: 

(a), the "size" a is maintained finite and nonzero; 

(b) the time measure (and space measure) are held constant, and 

(c) the speed v, is held constant. 
2     2    2 

Condition (a), is satisfied if for a   = nA (l-ß ) we require 
2       2 

nA = noAj (where the subscript refers to the values in the 

initial discrete space). 

From above we have 

n ~ T?T- (A) 

From condition (b) -we have t = nT = n^ = const. On combining with 

Condition (a) we have 
2 

(B) T0 A 

*8 

37 

jut 



From condition (c) we have 

v = |A „ ML = const = 
^A       T0        ß0A 

or 

ß  AQ 
l, 

ß    =ßo-^-.    (C) 

We now let A -» 0, having required v and t to remain constant. 

Lim   ß = 0 
A-» 0 

Lim a = HQAO    =aoe)(i.e., the initial standard deviation for 
A-» 0 ß = 0, i.e., zero velocity). 

a 
A A, Lim c = Lim   — = Lim   -^-/^ m • 

A -♦ 0      A -♦ 0        A -♦ 0   ° 

We note that the Lorentz-like contraction is lost; that the maximum 

velocity increases without bound—in short, that the natural relativistic 

properties of the discrete space are lost in going to the continuum as a 

limiting process. Having destroyed these formal properties in going to the 

continuum, we may reintroduce them as additional restraints appropriate to the 

substantitive problem encountered. For example, in the special theory of 

relativity one imposes the constancy of the velocity of light. The point 

made herein is that this property is a natural formal property of the 

discrete space—and that finite cognitive agents are constrained to cognize 

in the context of discrete spaces. Hence any admissible model of 

substantive finite space will, perforce, have the relativistic properties. 
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Example C: Numerousness of the Even, Odd 
Mumbers 

In conventional number theory following process I it is shown 

that the even (odd) numbers are equally as numerous as the transtitive- 

ordered set of all numbers. 

Following procedure III we note that for any finite model of size 

n the evens are as numerous as ^, n even (or as -^- if n is odd) and the 

n        n+1 
odds as numerous as?, n even or -5-, n odd. As n is increased this ratio 

of evens to n remains, or converges toward f—for any n. Thus the limiting 

ratio is not one of equally numerous to the total set of integers (unless one 

maintain that ^ of » is "as numerous" as »). 

Procedure II conforms to procedure III until n  (Toss(p)) is 

exceeded—at which time the odds and evens appear in random order and 

statistically the ratio becomes one-half. 

Example D: Trisecting the Angle 

In conventional geometry it is agreed that by using an idealized 

compass and ruler, any  given angle may be bisected, but that it is 

not possible to trisect an angle. It is explicitly forbidden, under the 

terms of the exercise, to permit infinite interative algorithms even though 

they may converge to a trisection of an angle. However, by the nature of 

the exercise, an infinite algorithm has been implicitly admitted by the 

supposition that one may place the idealized point of the compass exactly 

on top of a given point on the idealized paper. One can devise algorithms 

which enable one point to be placed within any e-neighborhood of a given 

point with a finite number of operations; however, they are of the nature 

explicitly forbidden. 
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The result of these observations is that if infinite procedures 

are ruled out    an angle can neither be bisected nor trisected. On 

the other hand, if infinitely converging algorithms are admitted, then 

one may construct, within any tolerable variance, the bisected and the 

trisected angle. Under procedure III, the variance is decreased indefinitely. 

Under procedure II [and the ultimate fate of procedure IIll the variance can 

be decreased progressively until the transitively ordered numbers are 

exhausted; further operations result in random results added to the initial 

determinable results. 

I <« 

. 

The behavior of determination under case II is more nearly in 

conformity tc actual physical behavior. Vie are led to surmise that this 

property—as a natural property of these finite spaces—may be more 

appropriately associated with the finiteness of the finite cognizing agent 

itself. 

One may regard procedure III as an interim one admitting of embedding 

one finite field in a larger one (i.e., greater p) in such a manner as to 

preserve pro tern the determinable character of calculation. This process 

may be iteratively advanced until some secondary requirement is met (i.e., 

the uncertainties are balanced or the error is admissible)—or until the 

process r?<st halt for leek of additional numerical resources. Procedure 

II identifies the resulting characteristic when such resources are exceeded— 

and any fixed system must necessarily sooner or later face the consequent 

introduction of indeterminancy (i.e., all systems are finite). 

The use of continuous mathematics to represent finite space-time 

under the problem conditions imposed here is admissible as an expedient only 

if it is kept in mind that (l) some inconsistency may inadvertently be 

introduced, and (2) it may be necessary to introduce additional side 

ko 
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constraints ostensibly as "properties" of the substantive problem in 

order to preserve some of the characteristics of the finite spaces - 

which have been lost in the conventional limiting processes (e.g., the 

constant finite speed of light in vacuo). 

If one does not admit the existence of a continuous space, even as 

an additional axiomatic input, he is led to define a concept "infinity" 

and a "limit" in terms of algorithms which are in every case necessarily 

truncated by limiting the sequential process to a finite number of operations. 

Statements about the continuum are then-shorthand statements of more exactly, 

definable finite procedures. Some such statements are inadmissible (e.g., 

"all complex numbers have square roots"). 

Let us also point out that there are profound generic differences 

between finite fields and infinite fields and the one does not gradually 

grow into the other. So long as a field is finite, no matter how large p 

hfrcmex,  it. is r-Ategori rally different from an infinite set. The transition 

occurs not during the finite approach to the limit, but abruptly "over the 

horizon" when the limit is reached (e.g., the relative numerousness of 

evens and odds cannot be understood via a gradual transition from finite 

to infinite sets). Thus, we must reexamine our understanding of limits, 

etc., in light of these results. We as finite cognitive agents, are 

constrained to reach all of our conclusions by finite procedures. Hence, 

since we can infer an infinite set as a finite sequence of finite sets, one 

must ask about the status of these infinite sets. Or, if we assume their 

existence, how do we work with them since they are not finitely attainable 

or realizable? 
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APPEPJDIX I 

i 

Given x % r(qk) vt.- j-.nuv; there exist two perfect squares between 

vhich x lies, sny 

(H,)3 <x<(P0 •: i)3  . (1) 

Uence (./X)R vill equal K0 or VQ  + 1 , depending on whether ve assume 

round-up, round-down, or round nearest. To increase resolution, ve way 

add a decimal place to the root by forming 

(V^)R •♦ lö (/WX*)R • 

How, inequality (l) implies 

(2) 

100(1^, )2 < lOOx < 100(Ej + l)s . (3) 

Theorem (l). There are nine perfect squares between 100K3 and 100(K + l)3, 

not counting the end points. 

Proof. Consider [10K + c*)3 where a is a nonnegative integer. Clearly 

[ION + a-]? G [100K3, 100(B + l)3] for a G [0,10] . 

Using Theorem (l) on inequality (3), ve see that lOOx lies between two 

perfect squares as follows: 

(IOMQ  + oi)3 < lOOx < (10H0  + ety  + l)3 Oi   € [0,9] 

Let us define Mj,   = 101-^ + c^  and rewrite ('l) as 

(NX )3 < lOOx < (Ki + l)a 

Let us now consider still another embedding vhich requires 

100(KX )
3 < 10*x < 100(1^ + I)3 . 

m 

(k)< 

(?) 

k2 



•s As before, we u&e Theorm (l) to fiiui a:} G [oyj] auch  Uwt 

(10Ü!   + o-a)
3 < 10S: < (10«',   + cs + 1):: (6) 

I '   and co forth.    After n eiitbcddines vo have 

* (».')" <-OO^'x < (K„   >• I)3 (7) 
f 

where   H, « lQH^i + <vn * 10(l01!n_3 + o^ ) + «a 

=  10(i0[l0IJ„_3   +  ffn_a] ■+   Ot-i )   +   CKn 

= 10"l^  i    X 101a'n_1   • (8) 
1=0 

Define U*K ri^r(^^).  • (9) 

Clearly (sAoSr'x)R  6-[H„,Nn+1] holds for any of the three replacement 

* alternatives. 
4 

s Thus from Equation (-9) ve obtain 

r W   N + n .  . 

From Equation (10) ve obtain "by squaring that 

Fran inequality (7) we find 

x 6 A„ (13) 

Consider the length of t^,  viz. \\\   . Wo have 

ui« ^ii-ii „ _J •* • :— . (u,) 

"      +** 
$s 



20 
•Bros for larße n,   |A,| fceJiev'c« accord!.,;.; to 3!0/.i0*  .    In the Hi.dt us 

» •+ ti ,   K | bo««** .infii.ii,.-.; „.1 .- r.d va represent :M3 «ysu-uii «».Uy as 

llw   I A,1=0. (15) 

Fron Equations (11) and (.13), vo ooe that both x and ((^C) f  are in ^ 

and from (15) we see that \ha | -* 0 . I.'snt ice 

W* ((,£)« )3 - x (16) 

end ve see that the eiEbeMins procedure converts to the appropriate 

limit to justify its definition and claim for acceptance. Koto, this 

formulation is valid for all three replacement techniques. 

Finally, it must he mentioned that the above proofs presuppose 

that all values be within the appropriate region of some Toss. As the 

embedding becomes richer and therefore more demanding of resources, 

the size of the Toss and—at an exponential rate—the size of the 

GF(p) become increasingly large. There are serious questions about the 

limiting size of these fields before they become so large as to violate 

our primitive commitments regarding numerousness and scope, etc. 
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us point out that there are alternative methods for defining an 
J 

f irreflexive binary relation and we have not yet fully developed the 

va+Afvr\siTf»   for   KhnnH-incr   amnnir  •f-.Vipm.      JiTvn   -ins-honr«*»      rmn   <w»"lr!   lncsllv 
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* 15.    One must introduce a purely finite field formulation of plane 

\ 

geometry.    For instance v?e may define a triangle as follows.    Let V 

be a two-dimensional vector space over GF(p).    Definition.    Let 
12  3 

x  ,x ,x € V he a set of pairwise liv  ?ly independent vectors. 
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Define the "object" dctereiijei by 4M three differences 
*  ~s  »  is  t 
x - x , x - x , x -x —called sides—to be a, triable. Denote 

.las 
this triangle by A(x ,x ,x ). In this vay one era develop a plane 

las 
geometry vith many familiar theorems.   For example, if A(x ,x ,x ) 

is a triangle with no side of zero "length," then there can be at 

jaost one_ orthogonal intersection of sides. 

16. Here P(n) denotes some proposition at the n  iteration. 

17. A. Fraenkel, and Y. Bar-Hillel, Foundations of Set Theory, North- ■ 

Holland Publishing Company, Amsterdam, 1958, and A. Fraenkel, 
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18. Procedural invariance is a generalization of the Einstein principle 

of relativity that is required to avoid ambiguity of convention— 

in the most general sense. See Foundations of Prescriptive Sciences, 

W  CJm-S-KI-. »n/t M  «-,, r» -r— — 

19. N. Smith, Behavioral Science, 3. (1956) 111. ' 

20. Here the "number" T| will represent the size or scope of a given 

cognitive system. In some broad sense -it is the largest number of 

counts that can be conceived of by cognitive agents from within this 

system. Traditional laatheraatics has used the symbol as in an un- 

restricted and unqualified sense that does not take the capabilities 

of the system into account. Thus, 11 is the largest count not the 

largest number. For a further examination of this point, see our 

earlier discussion. 
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